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REVIEW ARTICLE 

The kinetics of cellular patterns 

James A Glaziert§ and Denis Weairel: 
t Tohoku University, Research Institute of Electrical Communication, Sendai 980. Japan 
e Trinity College. Dublin. Dcpartment of Physics, Dublin 2, Ireland 

Received 12 November 1991 

Abstract. Many materials. including soap froths. polycrystalline alloys, ceramics, lipid 
monolayers and garnet films. have structures composed of either two- or three-dimensional 
polygonal domains separated by well defined boundaries. Usually. the surface energy 01 
these boundaries makes the pattern unstable. causing certain grains toshrink and eventually 
to disappear. Thus the pattern coarsens continuously unless other factors arrest the motion 
of the boundaries. We review recent theoretical, computational and experimental progress 
in our understanding of the asymptotic scaling laws that describe coarsening. In most cases 
the elementary expectation. that the mean grain radius scales with the square root of time. 
is confirmed. We pay particular attention to the history 01 the field. to understand why this 
elementary result has remained in doubt until now. 

1. Introduction 

Many naturally occurring structures, from the common soap froth to the large-scale 
distribution of galaxies in the universe (if we are to believe recent cosmological theories 
(Lindly 1991)), consist of statistically homogeneous domains separated from each other 
by distinct boundaries (see table 1). These boundaries are associated with an interfacial 
energy (surface energy in three dimensions, wall energy in two dimensions). If the total 
energy is simply the product of the boundary area times a ‘surface tension’ or surface 
energy, any reduction in total interfacial area will reduce the energy. Hence such 
structures are intrinsically unstable, always evolving towards patterns with less surface 
area, unless other factors (such as boundary pinning or short-range repulsive forces) 
intervene. The basic mechanism to reduce interfacial area is the elimination of entire 
domains. Hence the structure coarsens. In the simplest cases, the coarsening is without 
limit, other than that imposed by the finite size of the system. 

One may therefore ask the question: what asymptotic scaling law governs this type 
of growth? This question has been investigated in a variety of contexts for the past 50 
years or more, but there has been particularly rapid progress during the past five years. 
In this review we will summarize our current state of understanding, and discuss the 
history of the many misconceptions and misinterpretations that have occurred. 

We will focus primarily on the evolution of two-dimensional rather than three- 
dimensional cellular patterns because the experiments and theory are more tractable 
andthereforebetter understood. Ontheexperimentalside, thisresultsfromthedifficulty 
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Table 1. Froths and their designations. 

System Designation Reference 
- ,  , 

Soap froth 
Lipids 
Metal 
Ceramics 
Potts model 
Iron garnets 
Cucumber 
Cornea of eye 
Geography 
Universe 

Bubbles 
Bubbles 
Grains 
Grains 
Domains 
Domains 
Cells 
Cells 
Teritories 
Voids 

Glazier (1989) 
B e r g  e l d  (1990) 
Atkinson (1988) 
Brook (1976) 
Glazier eral(19W) 
Weaire eral(1991) 
Lewis (1923 j 
McDermott eta1 (1990) 
GettisandBoots il978j 
Lindly (1991) 

of  se...^^ iectioning and three-dimensional reconstruction in the direct lute ~ ~ rce' 
approach to structural analysis. While light scattering techniques offer more expedient 
methods of measurement, they can provide only incomplete information about the 
structure of a froth. On the theoretical side, the computations are much more cum- 
bersome in three dimensions, and the elegant mean-field theories that are made possible 
by the existence in two dimensions of a local topological rule for the rate of growth or 
shrinkage of individual bubbles (von Neumann's law (von Neumann 1952)) are not 
available. 

Because of the many fields in which cellular patterns occur, the terminology is 
somewhat confusing, as table 1 indicates. We shall usually refer to the domains as 
bubbles or grains. 

We will focus on soap froths because of Smith's original insight (Smith 1952,1954, 
1964a. b) that the soap froth represents the closest approach in an experimental system 
to ideal grain growth. Bragg and Nye (1947) had proposed even earlier that soap froths 
could be used to model grain growth in metals, but had not realized that the individual 
bubbles may in some circumstances be regarded a$ corresponding not to atoms in a 
crystalline lattice but to entire crystal grains. 

We will largely restrict our attention to scaling exponents. For additional infor- 
mation, refer to the many reviews and specialized papers on grain growth. General 
reviews include Abbruzzese (1992), Glazier (1989), Atkinson (1988) and Weaire and 
Rivier (1984). 

2. Two-dimensional cellular patterns 

A cellular pattern is a two-dimensional network of boundary lines meeting (usually) in 
threefold vertices. We consider cases where the dynamics are driven by surface tension 
(or surface energy) forces. The topology and dynamicsare related since the dominance 
of threefold vertices results from their structural stability. Fourfold vertices split into 
pairsof threefold vertices to reduce the boundary length, as shown in figure 1 (Gardner 
1986). SecondaryeffectssuchasthepresenceofPlateauborders(section 15)canstabilize 
fourfold vertices (Bolton and Weaire 1991, 1992). The domains outlined by these 
boundaries are generally approximately polygonal in shape (though magnetic bubbles 
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Figure 1. Instability of a fourfold vertex: (A) four 
points connected to a single fourfold vertex (total 
length 2.828) decay into (8) four points connected 
to two threefold vertices (total length 2.732). Since 
surface tension tends to minimize side length. (A)  
dissociates into (B) 

Figure 2. Elementary topological processes in two 
dimensions. (A) TI process-side swapping. (B) 
R ( 3 )  process-disappearance of a three-sided 
bubble. (C)T2(4) process-disappearanceofa four- 
sided bubble. (D)l7.(5) procers-disappearanceofa 
five-sided bubble. (E) Wall breakage next to an n- 
sidedbubble. Numbersarekeyed to column headings 
in table 2 ,  

present anextremecase where thisobservationfails),with moreorlessuniformlycurved 
boundaries. 

In ideal soap froths, magnetic bubbles and lipid monolayers, the equilibration time 
of the boundaries is short compared to the rate at which bubbles grow or shrink, so the 
pattern isrelaxed,orequilibrated. Inmetal grains, the ratesofdiffusion along and across 
grain boundaries are comparable. In the first case we find minimal surfaces of constant 
total curvature and internal angles at vertices of 120"(Plateau 1843, 1873). In the latter 
case, both the curvature and vertex angles can vary because of the failure to reach 
equilibrium and because of the effects of anisotropy. 

Similar geometrical rules hold in three dimensions, but vertices are fourfold with 
109.47"internal angles. The mean curvature of each bubble wall must be uniform at all 
points (since the pressure within each bubble is uniform), so the wall can assume 
the shape of an arbitrary minimal surface (Almgren and Taylor 1976). Some of the 
geometrical rules that simplify consideration of two-dimensional networks are lost in 
three dimensions, considerably complicating the problem (Avron and Levine 1992). 

3. Topological processes 

In the soap froth in two dimensions 'there are two basic types of topological trans- 
formation (see figure 2 and table 2). As shown in figure 2(A), two bubbles can push 
together and push apart two other bubbles. This is called a T1 process or side swapping. 
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Table 2. Topological transformations. Keyed to figure 2. The column numbers refer to the 
bubble numbers for [he corresponding topological process in the figure. 

Bubble index 
Change 
process 1 2 3 4 5 

TI +1 - 1  tl - I  - 
W 3 )  
R(4) -1 0 - I  0 

Bredk(n) + n - 4  -1  - I  

. ". 

- - -1 -1 - I  

- I  + I  - I  0 0 
- 

- - 

The second basic process is bubble disappearance or the T2 process. I n  the soap froth, 
three-sided (T2(3)), four-sided (T2(4)) and five-sided (T2(5)) bubbles can disappear as 
shown in figures 2(B-D). Additional topological transformations, for example wall 
breakage in froths (figure 2(E)), grain coalescence in  metals or mitosis in cells (the 
inverse of figure 2(E)). can result in totally different classes ofpattcrns. 

The speed of these transformations is much faster than the diffusion-driven area 
changes and most models assume that they occur instantaneously. 

4. Distribution functions 

Besides its overall length scale, the two basic characteristics of a given two-dimensional 
pattern are its area distribution function ~ ( u / ( Q ) ) ,  the probability that a given bubble 
has a given area a relative to the mean area of the pattern (a). and the topological 
distribution function p ( n ) ,  the probability that a bubble in the pattern has n sides. There 
are also various area-area, area-topology and topology-topology correlation functions, 
which we need not consider. In three dimensions, the basic distributions are p(u/ (u) ) ,  
the probability that a grain has a given volume U relative to the mean volume ( U ) ,  and 
p(f), the probability that a given grain hasffaces. There are additional distribution and 
correlation functions since the number of faces does not uniquely determine the shape 
of a polyhedron. 

Because of the limited statistics usually available, it is often convenient to charac- 
terize the distribution functions by their moments. We define the area moments of the 
distribution to be 

wherex a/(a). We define the topological moments of the distribution to be 

Pm = 2 p(n) (n  - (n))". (2) 

Higher-order moments are very sensitive to the large-nilarge-a tails of the distri- 
butions. where statistics are poor, so only the first few moments are useful. 
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5. Boundary motion and von Neumann’s law 

In general, boundarycurvature drives boundary motion. The soap froth lookssomewhat 
different from grain growth in a metal since the curvature of a bubble wall is constant 
while that of a metal grain varies from place to place. Nevertheless, we can regard both 
cases as different limits of a single model, which we call a viscous froth. 

For the soap froth, the rate of transfer of area between bubbles i and j is generally 
assumed to be proportional to both the pressure difference pi - pi, and the length of the 
boundarylii, between them. The area transfer per unit time is 

where K is a diffusion constant. In the soap froth, this relation is essentially Fick’s law. 
Neglecting inertia, the balance of forces on a point on a bubble boundary is 

p i - p i = u c - A u ,  (4) 

where uis the surface tension, or surface energy, c is the local curvature of the boundary, 
is the coefficient of viscous drag and uI is the normal velocity of the boundary. This 

balance of forces is related in an obvious way to the area change of a bubble: 

u L  dl. 

Usingequations (3) and (4) we find that 

dui 
dt Cdl-AK- 

so that 

da; KU _-  --# cdl. 
dt + Ax bubblei 

(7) 

Using the definition of curvature, this becomes 

dai/dt = [xu/(l + Ax)]+ (8) 
where is the total angle through which the tangent turns on a closed path around the 
grain, excluding the discontinuous angle changes at the vertices. At each vertex the 
angle changes by n/3, and the total angle change is 2n, so 

q5 = 2x - nn/3 = (6 - n)n/3. (9) 
Substituting for + yields von Neumann’s law (von Neumann 1952): 

da,/dt = K ‘ ( n  - 6 )  

wherex’ = nxu/[3(1 + Ax)]. 
In the limit I + 0 with cell wall curvatures determined by equation (lo), we recover 

thesoapfrothmodelofvonNeumann’soriginalderivation. InthelimitA + mweobtain 
idealized metallic grain growth, since the pressure differences become negligible and 
boundary velocities are simply proportional to local curvature. In both cases, the rate 
of increase or decrease of a cell’s area depends only on its number of sides. The two 
limits represent canonical models for soap froth and grain growth, respectively, and 
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Figure3. Structure produced by adirectrimulationofsoapfrothwith Plateau borders. From 
Bolion and Weaire (1991). 

have both been realized in direct numerical simulations, the former by Weaire and 
Kermode(1983b)andthelatterbyFrosteraf(Frost andThompson 1986, I987a, b,Frost 
eta1 1988, Howe 1987,Thompson erall987). 

If we had assumed an n-dependent typical internal angle O(n), the same derivation 
would follow to obtain the generalized result for an n-sided cell i (Glazier and Stavans 
1989): 

da,/dt = ~ ' { 3 n [ x  - O(n)]/x - 6). (11) 
The only pattern that is stable under von Neumann's law is one that has only six- 

sided cells. Introducing even a single defect pair into a perfect hexagonal lattice results 
in the collapse and eventual disappearance of all the bubbles in the lattice. 

\'on Neumann's law is not a complete description of the dynamics of a froth. It 
describes only the growth of bubbles with fixed numbers of sides. During the evolution 
of a froth, bubbles typically change their number of sides many times. Whenever a 
bubble disappears, some of its neighbours change their number of sides (see table 2). 
Any complete description of the evolution of the  soap froth must make additional 
assumptions about how side redistribution takes place. 

The above equation for von Neumann's law with n-dependent vertex angles arose 
in connection with the study of the effects of Plateau borders (PB), the finite liquid 
accumulations at vertices in a soap froth (see figure 3). In early work they were entirely 
ignored, so the theory and interpretation of experiments assumed a foam with negligible 
Liquid fraction, a dry foam. 

In the opposite extreme. the liquid fraction is so high that the bubbles are round and 
effectively isolated from each other (see figure 23(A)). In this case the rate of diffusion 
of gas from a bubble depends not only on its wall curvature but on the average pressure 
gencrated by all the bubbles in the pattern. This background pressure supplies area to 
bubblesatthesame timeastheircurvaturescause themtolosearea. While thederivation 
contains some subtleties, the same general argument that leads to von Neumann's law 
yields: 

da(r)/dc = K'(B - I / r )  (12) 
where B is an unknown background pressure term, which is uniform throughout the 
pattern but which may vary in time. Conservation of the total bubble area then requires 
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100- 8 12 16 20 

Number of Sides In) 
Figure 4. Internal angles in the soap froth. Average 
internal angles B(n)  of n-sided bubbles. Error ban 
show one standard deviation in the measured data. 
from Slavans and Glazier (1989). 

""tr 
3 6 9 12 24 36 66 -10 

Number 01 Sides (n) 

Figure 5. Von Neumann's law. Growth rates lor n- 
sided bubbles. Error bars show one standard devi- 
ation in the measurement. Single pointsindicate that 
only one measurement was made for that number of 
sides. From Glazier and Stavans (1989). 

that B = (l/r), so that we obtain the Lifschitz-Slyozov rule for the growth of isolated 
bubbles (Lifschitz and Slyozov 1959, 1961): 

da(r)/dt = d( ( l / r )  - l/r). (13) 
In fact, Lifschitz and Slyozov used B = l/(r) so that area was not conserved, but this 
difference does not greatly affect the result. As in the von Neumann's law case, small 
bubbles shrink and vanish and large bubbles grow, but the kinetics of the evolution is 
different and easier to simulate owing to the absence of discontinuous topological 
transformations. 

6. Von Neumann's law: experimental results 

Von Neumann's law was first checked experimentally by Glazier et a1 (1987) and Fu 
(1988).They foundthat, towithin theaccuracyoftheirexperiment, vonNeumann'slaw 
was verified, on aoerage, for ensembles of bubbles with up to nine sides, but failed for 
individual bubbles, e.g. some five-sided bubbles grew and some seven-sided bubbles 
shrank. However, some of their spread in growth rate may have been due to measure- 
ment error. They also found that, within the accuracy of their measurements, the 
diffusion constant K' in von Neumann's law remained constant. This posed a problem 
since the derivation of von Neumann's law is strictly local: it should be obeyed by each 
bubble individually. 

The discrepancy was partly explained by the measurements of Stavans and Glazier 
(1989), which showed that the average internal angles of bubbles were not exactly 120" 
(see figure 4). The observed angle deviations had a fairly large spread. The more recent 
and careful measurement of von Neumann's law by Glazier and Stavans (1959) used a 
froth in which a few large, many-sided bubbles had been intentionally introduced. Their 
measurements verified the ensemble form of von Neumann's law for bubbles with up to 
30 sides (see figure 5). They also observed a slight deviation from linear behaviour for 
few-sided bubbles, and showed that this deviation was compatible with the observed 
angle deviations according to equation (11). Since the angle deviations were statistical 
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in nature, they proposed that they were the origin of the observed fluctuations in the 
growthratesofindividual bubbles. More recently WeaireandBolton (1990) haveshown 
that the presenceofpecan result in theobservedangleandvonNeumann'slawdeviation. 
Such angle deviations have also been observed by Stine eral(l990) in lipid monolayers. 
Recent work by Stavans (1990) in a drained froth with extremely narrow PB confirms 
that in a dry froth the angle deviations disappear and that von Neumann's law is obeyed 
by individual bubbles. 

J A Glazier and D Weaire 

7. Scaling states 

A pattern in either two or three dimensions is in a scaling stare if all of its distribution 
and correlation functions for all dimensionless quantities are constant in time. In this 
case the only property of the pattern that can vary is its mean length scale. 

Von Neumann's law predicts that, in a scaling state, the average area of a bubble (a) 
is proportional to the time I, i.e. the average length scale goes like 10 where b = 0.5. The 
simplest argument is dimensional: the pattern is characterized in a scaling state by a 
singlc length scale, the mean cell radius ( r ) ,  with units of metres. The mean radius is a 
function of time, unitsofseconds, and the onlyparameter K' hasunitsof metressquared 
per second. Thus the only dimensionally correct combination of these three quantities 
in the form of a power law is 

;$ f i  = 0.5. (14) 8 usas ( r ) a  ( K )  I 

The Lifschitz-Slyozov growth law (equation (13)) yieldsadifferent growth exponent 
on dimensional grounds. As before, in a scalingstate, the only length scale is the mean 
radius ( r ) ,  and the only parameter K' has units of metres cubed per second, so the only 
dimensionally correct combination of these three quantities in the form of a power law 
is 

( r )  cc (Kf)0,33t0.33 =3 p = 0.33 

so the f i  for Lifschitz-Slyozov growth and von Neumann's law growth are different. 

8. Determination of the growth exponent 

Surprisingly, since it is the central issue in the analysis, there has been relatively little 
attention paid to the technique used to determine the growth exponent, Typically the 
average bubble size is measured a a function of time, plotted on a log-log plot, and the 
slope is determined by linear regression. This process is subject to several typesof error. 

The region in time over which the scaling state is achieved is difficult to determine 
from the area data alone, and thus there is a tendency to include too much short-time 
data, which generally lowers the measured exponent. Many people seem to accept that 
a system is in a scaling state whenever it exhibits power-law growth. However, because 
of the difficulty of measuringgrowth exponents and distinguishing between power-law 
and non-power-law growth, this assumption should be avoided. Instead, one should 
determine the onset of the scaling state independently, e.g. by requiring that p(n)  and 
p(a/ (a) )  be constant. Practically, we may accept that any pattern in which p 2  is constant 
is in a scaling state. 
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Time (minutes) 

Figure 6. Area growth in soap froth. Early exper- 
imental data on area growth in two-dimensional soap 
froth. (A) Average area versus time. From Smith 
(1952). (B) Average area (=]/number of bubbles, 
N) versus time for experiment (0) and vertex model 
(x), FromFullman (1952). 

The range of length scales over which the exponent is measured is rarely as much as 
a full decade, since the pattern usually must grow by an order of magnitude in area to 
reacha well behavedscalingstate. Itisdifficult tomake theinitiallength scalesufficiently 
smallthat therearemanygrainsleft inthescalingstate.Theresult is that theuncertainties 
in exponent can be very large, and it is difficult to determine unambiguously whether 
the growth is consistent with a power law. The only remedy is to use the largest possible 
system, and the smallest possible initial grain size. 

Finally, the timeoriginisessentiallyarbitrary,and thiscan affect the fitatshort times. 
This problem is particularly serious when the measurements are made at logarithmic 
intervals in time, so that shorter times are more heavily represented. It is better to f i t  
directly the expected form of the grain growth, 

r(t) = ( t  - to)# (16) 

by adjusting to and 6. 

9. Early history of scaling for the two-dimensional soap froth 

In his initial study of soap froths, Smith (1952) found that the areas of soap bubbles in a 
sealed cell grew linearly in time, = 0.5 (figure 6(A)). He used air in a sealed circular 
glass cell at a pressure close to the vapour pressure of water (to increase the rate of 
change of area) and applied vigorous shaking to produce an initially disordered froth 
with a few thousand tiny bubbles, which rapidly evolved to a few hundred bubbles 
with a bubble diameter of between one and two millimetres. This initial condition 
corresponded closely to the metallic systems he was trying to model in which growth 
began from many nucleation sites separated by atomic length scales. At nearly the same 
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Figure7. Evolution o fa  soap froth pattern, for initially ordered (left) and initially disordered 
(right)states.Timesare:(A)l h,(B)2.52 h.(C)4.82 h.(D)8.63 h,(E)19.87 h,(F)52.33 h; 
(A') 1.95 h,(C')21.50h,(F') 166.15 h. FromGlazierool(1987). 

time, Fullman (1952) independently obtained the same result (figure 6(B)) in a medium- 
pressure sealed container. 

That should probably have been definitive, except that Smith repeated his exper- 
iment with a slightly different method, beginning with bubbles blown individually with 
fairly uniform size. Aboav, analysing these data, obtained a value of B = 1.0. He 
also found that p2 grew linearly in time (Aboav 1970). Weaire and Kermode (1983a) 
suggested that the result might be a fractal soap froth, with bubbles at all length scales 
(such structures were later studied by Herdtle and Aref (1991a) and shown to be 
unstable). The development of such a fractal structure from an initially homogeneous 
length scale would imply that there was no scaling state in the evolution, as in Lifschitz- 
Slyozov coarsening. This was an intriguing possibility, and excited much new exper- 
imental and theoretical effort. 

Fu (1988) also studied the evolution of a froth by photographing under a microscope 
the very small air bubbles in a cell made from microscope slides but was unable to 
determine a consistent value for 0. 

Glazier eta1 (1987) repeated Smith's second experiment using a series of large sealed 
rectangular experimental cells beginning with individual bubbles of afairly uniform size. 
They showed that Aboav's high p and increasing p2 were due to transient effects. An 

~ ~. ~ ~~~~~ ~~ ~ ~ ~~ ~~ ~~~~~ 
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O b  ' ' ' 100 ' ' ' ' 200 ' , '  

Time (hours1 Time (hours) 

Figure 8. Evolution of p2 versus time in the two- 
dimensional soap froth, for an initially ordered state 
(0) and an initially disordered state (0). From Sta- 
vans and Glazier (1989). 

Figure 9. Average number of bubbles ( l / ( a ) )  versus 
time in the two-dimensional soap froth (A) for an 
initially ordered state (p = 0.34 ir 0.02) and (B) for 
an initially disordered state (@= 0.4 ir 0.04). From 
Glazier et ol(1987). 

initial pattern composed of bubbles of fairly uniform size organizes itself into patches of 
regular hexagons, which do not evolve (see figure 7). Only the bubbles with n # 6 at the 
grain boundaries can grow or shrink. Hexagonal patches can only disorder at their 
boundaries as bubbles change their number of sides owing to the disappearance of 
neighbouring bubbles. The spread of disorder is diffusive and therefore the rate of 
evolution is slow. Because these hexagonal patches retain the initial length scale of the 
pattern, they must disappear before a scaling state can be reached. 

At intermediate times there are largeevolving bubbles, as well asmany small bubbles 
at the original length scale. The large bubbles have many sides and grow rapidly since 
they are surrounded by much smaller bubbles. The result is very rapid evolution and an 
effective /3 > 0.5, as noted by Aboav (1970). At the same time the mixture of evolved 
and original length scales increases b, p2 and p t .  When the original length scale finally 
disappears, p ,  p2 and p$' decrease to their scaling state values (Stavans and Glazier 
1989). The evolution of p2 is shown in figure 8. Sometimes there is a second oscillation 
of p2 (Glazier 1989, Glazier etal1990a). 

Regardless of initial conditions, all Glazier et al's patterns eventually reached a 
regime in which the area grew as a power law and p ( n )  was constant (see figure 9). 
However, they measured a growth exponent of p = 0.34. An obvious possibility was 
that K' in von Neumann's law decreased with time. However, they found it to be 
constant. They reluctantly concluded that the pattern did not reach a scaling state. Such a 
conclusion had been suggested by the Potts model simulations of Grest et a1 (1984), 
which appeared to have /3 = 0.4, and by the fractal hypothesis of Weaire and Kermode 
(1983a). It was also supported by the observation that, in metals, p was usually less than 
0.5 (see table 3) (Martin and Doherty 1976). 
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Figure I0.Steady-state topologicaldistribution func- 
tionp(n) lor a two-dimensional soapfroth in ascaling 
stateat threedifferenttimes. FromStavansandGlar- 
ier (1989). 

Figure 11. Plateau border broadening. Plateau bor- 
der wldths versus time for two different rwo-dimcn- 
sional soap froth experiments conducted in sealed 
cells. From Glazier and Stavans (1989). 

I 

,$ 4000 .. : = I  I 
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Figure 12. Area growth in soap froth. Average area 
(a) versus time for a dry two-dimensional soap froth 
inalargecontainer(O).andforthc two-dimensional 
next-nearest-neighbour square-lattice Potts model 
(0). FromGlaziererul(1990a). 

10. Recent experiments 

The experiments discussed in section 9 yielded values for /3 ranging from 0.32 to 1 .O (a 
surprisingly large range for a simple parameter). and suggested that the soap froth both 
did and did not reach a scaling state. Recent theories and simulations have clarified the 
situationand confirmed the existenceofascalingstate withp = 0.S.StavansandGlazier 
(1989) showed that p(n)  reached constant form values regardless of initial conditions, 
so that the long-term state of the soap froth was a scaling state (see figure 10). Glazier 
and Stavans (1989) suggested that the anomalous value of p resulted from the growth of 
the PE during coarsening (see figure 11). Later Weaire and Bolton (1990), Bolton (1990) 
and Weaire (1991,1992) showed theoretically (as discussed in section 15) that PB could 
explain the measured value of 6. 

When Glazier eta1 (1990a) studied coarsening in a dry froth in a much larger cell, 
they obtained /3 = 0.5 (see figure 12). They also verified that p(n) and p(a/(a)) were 
constant in long-time states. Stavans (1990) performed experiments in a drained exper- 
imental cell, in which he periodically removed fluid from the froth to keep the widths of 
the PB narrow and constant at (5 2 1.5)% of the spacing between his top and bottom 
plates. He found p = 0.5 within a few per cent at all times. 
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Table 3. Growth exponent ( ( r )  0: l R )  for soap froth, lipids, magnetic bubbler, metals and 
models. 

System 

Soap froth 
Soap froth 
Soap froth (wet) 
Soap froth (dry) 
Soap froth (drained) 
Soap froth (3D) 

Lipid monolayer (wet) 
Lipid monolayer (intermediate) 
Lipid monolayer (dry) 

Magnetic froth 
Magnetic froth (high E )  

AI 
Co,Ti 
Fe 
Pb 
Sn 
MgO 
Direct simulation 
Direct simulation 
Direct simulation 
Lifschiu-Slyowv 
Mean-field theory 
Vertex model (2D) 
Vertex model ( 3 ~ )  
Potts model (ao) 
Potts model ( 3 ~ )  

B 

0.5 
1.0 
0.32 
0.5 
0.5 
0.5 

0.3 
0.4 
0.5 

None 
1.45 

0.25 
0.34 
0.40 
0.40 
0.50 
0.5 

0.5 
0.5 
0.5-0.6 
0.33 
0.5 
0.5 
0.5 
0.5 
0.5 

Reference 

Smith(1952) 
Aboav (1970) 
Glazier er a/ (1987) 
Glaziereru/(1990a) 
Stavans (1990) 
Durian etd(1990) 

Bergeerul(1990) 
Stine elu/(1990) 
Berge efd(1990) 

Molho in Glazier (1989) 
Babcockera/(I990) 

Gordon and El-Bassyouni (1965) 
Takasugi and Izumi (1985) 
Hu (1974) 
Bolling and Winegard (1958) 
Holmes and Winegard (1959) 
Kapadia and Leipold (1974) 

Weaire and Kermode (1984) 
Frost erd(1988) 
HerdtleandAref(1991b) 
Lifschitz and Slyozov (1959) 
Fradkoveful(1985b) 
Fullman (1952) 
Nagai cfd(1990) 
Grest eld(1984) 
Anderson d o /  (1989) 

11. Direct simulation of two-dimensional froths 

In the following sections we discuss a few of the many attempts to simulate two- 
dimensional grain growth. These fall into several classes: direct simulations, mean-field 
theories, vertex models and the Potts model. We will not discuss the many statistical 
models that predict p(n)  and p(a/(a)) in the scaling state but do not determine the 
coarsening dynamic?.. 

Direct simulations attempt to reproduce accurately the equilibrium configuration of 
a froth with a model that includes the essential physics ofgas diffusion and wall motion. 
They also include rules for the changes of topology that take place whenever cells or cell 
sides shrink to zero size. Since topological changes have not been modelled dynamically 
in a disordered froth (such modelling has been done in a regular hexagonal lattice by 
Kraynikand Hansen (1986) and Kraynik (1988)), theseare treatedassudden transitions 
between quasi-static configurations. In these models, it is easy to include impurity 
pinning to obtain the lower scaling exponents observed in metals (see table 3; Frost and 
Thompson 1986, Thompson eta1 1987). 

Frost andThompson took a metallurgical approach in their simulations and assumed 
that grain boundaries had a fixed mobility p,  so that the velocity of any point on the 
boundary was 
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Figure 13. Pattern evolution in a direct simulation: (A) Inilkdl excluded-volume Voronoi 
construction; (B) t = 0.5 diffusion times; (C) I = 1.0 diffusion times; (D) t = 3.0 diffusion 
times; (E) t = 10.0 diffusion times; ( F )  1 = 30.0 diffusion times. From Frost ef d(1988). 

0) = P f i / P ( X )  (17) 

where p(x) is the local curvature and u(x )  the local velocity at a point xon the boundary, 
and d the unit normal at that point. i n  this model, as discussed in section 5 ,  the individual 
grains need not have well defined pressures. The boundaries were divided into nearly 
flat segments, which were approximated by circular arcs, and evolved according to 
equation (17). Extra segments were added as needed, and the positions of vertices 
adjusted to produce 120" angles. Topological changes were made in a separate step. 
Using this model, Frost andThompson camed out extremely long simulations, yielding 
p = 0.5 to high accuracy over a three-decade increase of pattern length scale (Frost and 
Thompson 1986,1987a, Frost er all988, Howe 1987, Thompson et al 1987). We show 
the pattern evolution of this model in figure 13. 

The models of Kermode and Weaire (1990), Wejchert et al (1986). Weaire and 
Kermode (1983a, b) and Aref and Herdtle (1990) are similar in spirit but differ in 
technique (Herdtle and Aref 1991b). Weaire and Kermode (see figure 14) relaxed their 
pattern to equilibrium by a repeated cycle of local adjustments, while Herdtle and Aref 
performed simultaneous adjustments on the entire structure. This may be significant, 
since the soap froth is a strictly chaotic system (topological redistribution represents a 
repeated approach to sensitive choice points), so that the detailed evolution of the 
pattern may depend on the sequence in which adjustments are made. However, since 
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Figure 14, Scaling state soap froth pattern in a direct 
simulation. From Weaire and Kermode (1983b). 

0 1 2 3 4 5 6 
Time (Arbitrary Units) 

Figure 15. Evolution of p? versus time in a direct simulation for varying initial conditions. 
From Weaire and Lei (1990). 

both authors separate topological adjustments from diffusive adjustments, the prob- 
ability of such discrepancies is minimized. 

Herdtle and Aref (1991b) point out that there are many initial conditions for which 
a scaling state is never reached, or for which the approach to a scaling state takes an 
arbitrarily long time. Pathological examples of the former case include a tessellation of 
regular squares and octagons with a small compression in one direction, which retains 
its initial p(n) at all times (note that this pattern is unstable to small perturbations), and 
of the latter a large perfect hexagonal lattice with a single defect. The tacit assumption 
is that in experiments the initial condition is such that a statistical treatment is appro- 
priate, and that such pathological conditions will not arise spontaneously. 

0.05, using 
several samplesof 500 cells, with differing initial structures (see figure 15). The variation 
of mean cell area with time was consistent with /3 = 0.5 (Lei 1990). Herdtle and Aref 
(1991a), using samples of 1024 cells, obtain p 2 =  1.2 and, more disturbingly, 
0.5 < p s 0.6, with the difference from 0.5 regarded as significant. 

The difference in the values of p2 may be due to the way in which very small cells are 
treated in the simulations. Such cells, though short-lived, contribute disproportionately 

Weaire and Lei (1990) obtained the asymptotic value of p2  = 1.42 
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to @*, so that it matters whether they have, say, three or four sides. However, there is a 
much greater discrepancy in the early-time behaviour, with Weaire and Lei reproducing 
thc experimentally observed 'overshoots' of the experimental data while Herdtle and 
Aref do not. The origin of this disagreement remains a puzzle. 

J A Glazier and D Weaire 

12. Mean-field theories 

Direct simulations decompose coarseninginto two processes, a law defining the rate of 
change of area of a bubble, and a set of scattering processes that occur when bubbles 
disappear. We may simplify our models by applying these processes directly to the 
distribution functions (with or without correlations), to obtain mean-field theory of 
master equation type. The typical form is 

dp(n, a, 01 (da/dO(n - 6)p(n,  a , f ) .  (18) 

There were many early attempts to write such models for metallic grain growth using 
growth laws based on bubble radius (see Glazier 1989 for a discussion). These were 
unsuccessful because, as discussed in section 5, radius-based models yield p = 0.33. On 
the other hand, any von Neumann-based mean-field theory will yield 0 = 0.5, according 
to equation (14). Mean-field theories also treat bubble disappearance (T2 processes) 
and stress relaxation (T1 processes) separately, so the rate of T1 processes appears as a 
free parameter (generally set equal to zero). 

Ftadkov et al (1985a, b, 1987, 1988). Beenakker (1986, 1987, 1988) and Marder 
(1987) all studied von Neumann's law mean-field theories. The first two also looked at 
evolution on a topological network. In these models the topology and connectivity of 
the network are preserved but the positions of the vertices are neglected, to produce a 
network of vertices (representing bubbles) with an area at each vertex and an associated 
list of neighbours. The areasare then evolvedaccording to von Neumann's law. Vertices 
are deleted and the topology rearranged according to the allowed scattering processes, 
whenever avertex reacheszero area. These modelsreproduced the transients observed 
experimentally for initially ordered patterns (see figure 16) and gave distribution func- 
tions with the correct exponential cut-offs, but the wrong shapes. Recently Stavansef al 
(1991) have shown that the error in the distribution functions was due to incorrect 
choices for the correlations of side redistribution on bubble disappearance. 

13. Vertex models 

Another approach to a direct simulation was originally proposed by Fullman (1952), 
and has been extensively pursued by Kawasaki and co-workers (see figures 16 and 17) 
(Kawasaki eta1 1989, Kawasaki 1990, Kawasaki and Enomoto 1988, Enomoto and Kat0 
1990, Nakashima et a1 1989. Nagai et a1 1988, 1990). In this case the vertices at which 
bubbles meet are treated as pseudo-particles with well defined mobilities and subject to 
forces determined by the positions of the neighbouring vertices. The connections 
between the vertices are assumed to be straight and deviations from 120" angles are used 
to determine an effective curvature. The great advantage of this method is that it is 
computationally efficient. Fullman did his computations by hand, and his original model 
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Figure 16. Average area versus time for mean-field theories. (A) From Marder (1987); full 
curves show simulation. triangles are data of Glazier el a1 (1987). (B) From Fradkov PI of 
(1985b). (C) From Beenakker (1988). showing the different transients for initially ordered 
(0) and initially disordered (D) patterns. 

is one of the simplest and most intellectually satisfying. The effective force is simply the 
sum of unit vectors connected to the three neighbours j of a vertex. xi: 

The vertex velocity vi  is determined from the force by assuming a boundary-length- 
dependent mobility: 

ui = F ;  IF; I/ 2 F i .  ( x ,  - Xi). 
neighboursi 

However, there is no rigorous way to convert true curvatures into vertex angles, so 
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Figure 17. Pattern evolution of a vertex model simu- 
lation: (A) 5.0 Monte Carlo steps: (B) 20 Monte 
Carlasteps: (C)50MonteCarlosteps. Redrawn from 
Kawasaki erd(19X9). 

Number of Sides (n) 
Figure 18. Scaling state topological dirtributions for 
a two-dimensional soap froth (-) and a nearest- 
neighbour hexagonal-lattice Potts model (----). 
From Glazier P I  a/ (1990a). 

vertex models remain unsystematic approximations. Kawasaki and collaborators have 
studied many variations of this basic model. They all reach a scaling state with /3 = 0.5, 
but d o  not obey von Neumann’s law, and their scaling state distributions generally differ 
significantly from experimental results. 

14. The Potts model 

The two-dimensional Potts model simulation is another extensively studied model for 
coarsening in two dimensions (Anderson et a1 1984, 1985. 1989, Grest et a1 1984, 1992, 
Srolovitz et al 1984, Glazier et al 1990a, b. Holm et a1 1991). It is fundamentally a 
microscopic metallurgical approach to coarsening, with ‘atoms’ that jump from grain to 
grain. Since there is an underlying lattice, there is an underlying length scale, which has 
created some uncertainty in the past over the validity of simple dimensional arguments. 

~~~~ ~~~~~~~~ ~ ~~~ ~~ ~ ~~ ~~~ ~ ~~ 
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Figure 19. Plot ofp, venusanisotropy for the scaling 
state distributions of two-dimensional Potts model 
simulations. From Holmera/(IWl). 

Figure20.Simulationofsoapfroth withlarge Plateau 
borders. Compare to the lipid monolayers shown in 
figure ?3(A). From Bolton and Weaire (1992). 

The model itself consists of a surface energy term. There are an arbitrary number of 
equivalent spin states a(i, j) located on a regular lattice. The basic Hamiltonian is 

x= C. 1 - ~ o [ i . j l . ~ i , , ~ ~ ~  (21) 
U.j] ( i ' , j ' ]  ncighhourr 

Evolution proceeds by selectingaspin at randomandconvertingit to another value with 
probabilityexp(-AX/kt). where Ax i s  theenergygainproducedbythechange. Above 
a temperature T,, the pattern melts into random disordered spins. Below Tc, the spins 
coalesce into well defined patches. with each different spin state denoting a different 
grain. At T = 0 the domains grow relaxationally as in soap froth. 

There are two basic differences between the Potts model and the soap froth. The 
time for diffusion along a grain boundary in the Potts model is long compared to the 
diffusion time across the boundary as in a metal. Thus boundaries in the Potts model 
and metals are not equilibrated. Also, the Potts model, like a metal, has a lattice 
anisotropy while the soap froth is entirely isotropic. 

Holm et a/ (1991) have studied the effect of lattice anisotropy on coarsening. Short- 
range (high lattice anisotropy) interactions produce pinned patterns rather than con- 
tinuously coarsening scaling states. However, the nearest-neighbour hexagonal and 
next-nearest-neighboursquare-lattice Potts models reach scaling states withb = 0.5 and 
p 2  < 2.0, with p 2  and the duration of the transient increasing monotonically with the 
anisotropy (see figures 18 and 19). Extrapolating to zero lattice anisotropy gives the 
measured value for the soap froth, while the high-anisotropy limit agrees with the 
experimental result of Fradkov et a1 (1985a) for two-dimensional grain growth in 
AI + 104Mg foil at 460°C. In metals, the effective p increases with the annealing 
temperature (which is equivalent to a decreasing anisotropy) to a maximum of 0.5 near 
the melting point (Beck 1954). 

15. Plateau borders 

In this and the following sections we consider extensions to ideal two-dimensional soap 
frothcoarsening: PB, three-dimensional froths, lipid monolayers and magnetic domains. 
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All of the models that we have reviewed treat bubbles that are separated by lines 
meeting at point vertices. As we noted, several aspects of the coarsening of two- 
dimensional soap froths were inconsistent with such models. In metals, i t  was known 
that during coarsening impurities initially distributed uniformly in the material tend to 
segregate preferentially in the grain boundaries, reducing the boundary mobility (which 
is roughly equivalent to  the von Neumann K') and resulting in a lower effective 0 (Beck 
1954). 

In thesoap froth,verticesconsist of fluid-filled triangular regionsor PB. Ifcoarsening 
takes place in a sealed cell, the size of the PB increases, as the total boundary length 
shrinks, preserving the total fluid volume. If the PB size is much larger than the cell wall 
thickness. the latter can be treated as infinitesimal and each PB takes the form of a 
'triangle' with curved sides. We may assign a pressure pu to the fluid within the triangle, 
and the pressure difference between this fluid and an adjoining cell determines the 
curvature of that side of the PB, in equilibrium with surface tension: 

p ,  - p i  = tac (22) 
agreeing with equation (4) except that the surface tension is one-half that of a bubble 
wall because the latter has two sides. Equilibrium also requires that the PB connect 
smoothly (i.e. with a common tangent) to cell walls. 

Usingelementary mechanical arguments. Bolton and Weaire (1991) showed that the 
modelling of PB can be drastically simplified. Provided only three-sided PB occur, the 
circular extrapolations of the bubble walls into the PB meet in a common point at 
120". Thus the PB may be regarded as decorations superimposed on an undisturbed 
equilibrated froth structure. Using this result, and computations in which 'decoration' 
of the skeletal structure with PB was included, it was possible to explain the observed 
angle, von Neumann's law and deviations. The structure shown in figure 3 was 
produced by this method. 

As far as diffusion and coarsening are concerned, the PB simply reduce wall lengths 
and hence diffusion rates as originally suggested by Glazier and Stavans (1989), in 
accordance with equation (3). The chief surprise was that a decrease in K' too small to 
measure experimentally could still have a large effect on the measured value of /3. 

Bolton and Weaire assumed a uniform PB pressure, since the PB connect at the top 
and bottom plates of the apparatus. A more detailed consideration of the effects of PB 
on coarsening would have to analyse the variation of this pressure (and hence the size 
of the PB) with time. in accordance with particular experimental conditions. 

The assumption that all PB are three-sided restricts this picture to low fluid fractions. 
If the proportion of fluid is increased, fourfold and higher-order vertices are formed. 
This regime occurs in lipid monolayers, and has been explored in direct simulations by 
Bolton and Weaire (1992) (see figure 20). with regard to mechanical properties but not 
coarsening behaviour. 

16. Three dimensions 

In three dimensions the average total curvature of the surface of a bubble is not deter- 
mined by its number of faces (Avron and Levine 1992). Thus there is no simple three- 
dimensionalequivalentofvonNeumann'slaw. Ina two-dimensional pattern theaverage 
number of sides per grain is six In three dimensions there is an extra degree of freedom, 
so the equations for the number of faces per grain are under-determined. If the average 
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Figure 21. Topological lransformalionr in three 
dimensions: (A) T2(4) proccs% (B) TI process 

Figure 22. Three-dimensional groulh of area venus 
tn”nshavingneam. From Dunanrral(l99Ob) 

number of faces per grain is (f) and the average number of sides per face is (a,), then for 
an infinite froth the quantities are related as 

(nf) = 6 - 12/(f). (2-3) 

du,/dt ~ ( ( n  - f)  (24) 

Rivier, by analogy with von Neumann’s law, has suggested that a possible law for the 
dynamics could be 

where u,is the volume of a bubble with f faces and (f) is the average number of faces 
per bubble in the froth, but his argument is at best an approximation true for ensembles, 
unlike von Neumann’s law, which should hold for individual grains. Because of the 
difficulty of experiments in three dimensions, this relation has not yet been experi- 
mentally tested. 

The basic topological transformations are also different, though all changes can still 
be reduced to two basic cases: the T1 process in which two bubbles push together to 
createanewface(figureZl(B))andtheT2(4)process, thedisappearanceofa tetrahedral 
grain (figure 21(A)). However, the three-dimensional TI process does not conserve the 
total number of faces. It is also unclear how many different types of polyhedral bubbles 
can disappear directly without side shedding and thus how many different types of T2 
processes there are. However, regardless of the detailed form of the equation. in a 
scaling state, the curvature must depend only on the bubble size and dimensionless 
parameters, The rate of diffusion is proportional to the surface area times the reciprocal 
of the radius of curvature with a constant depending on dimensionless parameters: 
do/& = d’(l/r)a [m3s-’] = d’[m-’][m2] 3 K“ [m2 s-‘1. (25) 

Thus by equation (14), p = 0.5 and (U) cx 
Nagai et a1 (1990) wrote a vertex model assuming that only tetrahedral bubbles 

disappear directly and began with a Voronoi construction containing 343 grains. Their 
equation of motion is of a Fullman type with a fixed mobility per vertex U: 

where AT is a triangle (i, j ,  k) containing vertex i ,  n, the clockwise unit normal to (i, j ,  k) 
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and 5 the position of the vertex j .  They obtained a scaling value of (f) = 13.6 and P = 
0.5. determining theirscalingregime by direct measurementsofp(f)andp(u/(u)).They 
also compared the results for two-dimensional sections of their model to those obtained 
for two-dimensional simulations and experimental two-dimensional sections of metals 
and found substantial differences. Nor did they find good agreement between their 
modeland the three-dimensionalPottsmodel or actual metal grains. Since the derivation 
of the law of motion for for vertices is inevitably ad hoc, a three-dimensional version of 
von Neumann’s law is needed to check the realism of the model. Avron and Levine 
(1992) have recently made progress towards such a model. 

While the computational burden for three-dimensional Q = 48 Potts model cal- 
culations is substantially greater than in two dimensions, Anderson et a/ (1989) have 
performed three-dimensional simulationson a 100 X 100 X 100 lattice using a variety of 
interaction distancesat zero temperature. Their technique wasidentical to that described 
for the two-dimensional case. For nearest neighbour interactions, they found that grain 
growth ceased after a short time. For next-nearest-neighbour interactions they did not 
reach a scaling state, though the pattern continued to coarsen with an effective fi = 
0.28 & 0.02. For longer-range interactions they reached a scaling state with p = 
0.48 c 0.04. However, a naive fit to their data gives fi = 0.39 -c 0.02. Thus, the effective 
p was strongly dependent on the time cut-offs used in the~fit, which may be biased by 
the expectation that /3 = 0.5. They found (f) = 12.9 for the final scaling state. The 
agreement with experimental values for metal grains was good (both the experimental 
andsimulationalp(u/(u)) are essentiallylog-normal (KurtrandCarpay(l981)) with the 
residual discrepancy compatible with anisotropy effects. 

The experimental difficulties of direct measuremens of three-dimensional structure 
are substantial, both in information storage and practicalities like measuring time. The 
only direct measurement of the topology of a soap froth, unfortunately, was made on a 
froth in which all bubbles had the same volume and it was assumed that no grain growth 
occurred (Matzke 1945, 1946, Matzke and Nestler 1946)! In metals, serial sectioning 
gives the length scale easily, though p(f) and p ( v / ( u ) )  are difficult to determine, The 
valueof PBuctuatesbetween 0.25andOSasshown in table3, apparentlydue to impurity 
and anisotropy effects. 

Recently Durian er a1 (I990,1991a, 1991b) have carried out a series of experiments 
using diffusing-wave spectroscopy on the evolution of Gillette Foamy Regular shaving 
cream. This is produced as a homogeneous froth of very small bubbles (diameter of 10 
to 20 pm), with no large gaps. During their experiment they observed no gravitational 
drainage or wall breakage. Their technique allows them to measure the mean distance 
between scatterings by bubble films. After a short transient (during which the rate of 
evolution increased monotonically to its final vaolue) they found P = 0.37 2 0.05 (see 
figure 22). Unfortunately, while their technique allowed them to estimate the total rate 
of side redistribution in the froth, it did not allow them to measure p(f). 

J A Glazier and D Weaire 

17. Lipid monolayers 

In alipidmonolayersystem,amonolayerofanamphiphilicmolecule(e.g. pentadecanoic 
acid) is Boated on a water surface. The monolayer can undergo a phase transition 
between a two-dimensional gas phase and a two-dimensional liquid phase. The two 
phases may be observed directly using a fluorescent amphiphilic dye, which fluoresces 
only in the liquid phase (Losche and Mohwald 1984). When the pressure is gradually 
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Figure U. Bubbles in lipid monolayers: (A) separated; (B) close-packed. Figure supplied 
by Berge (1989). 

increased through the phase transition, small bubbles of gas form, surrounded by a 
continuous background of liquid. Sometimes the gas bubbles contain small liquid drops, 
but these do not seem to affect the subsequent evolution. The basic topology is identical 
to that of the soap froth, except that the liquid and gas are composed of the same 
material, so there need be no conservation of their amounts. The liquid fraction is thus 
an easily tunable parameter, allowing the creation of patterns ranging from single 
isolated roundgasbubbles (figure 23(A)) to fully polygonal close-packedbubbles (figure 

The existence of dipoledipole interactions prevents the lipid bubbles from coalesc- 
ingandallowsfortheformationofboth bubbleandstripepatternsasinmagneticbubbles 
(Andelman et al 1987). The chief difference from magnetic bubbles is that the dipole 
interaction appears to be short-range. So, for widely separated bubbles, it is most 
convenient to think of the interaction between the bubblesand a background mean field. 
This is the limit originally proposed for grain growth by Lifschitz and Slyozov (equation 
(13)), which yields p = 0.33. Berge et a1 (1990) found p = 0.3 for a separated froth of 
round bubbles (liquid fraction 50%), with a power-law tail in the area distribution 
function, different from the soap froth's exponential cut-off. 

In the close-packed limit, local interactions should dominate to produce von Neu- 
mann's law behaviour, with p = 0.5 and soap-froth-like distributions. Experimentally, 
Berge et a1 found, in the close-packed case (liquid fraction 25%), p = 0.5 and soap- 
froth-like distribution functions, with p2  = 1.4. Stine et a1 (1990), working with an 
intermediate fluid fraction, found 0 = 0.4 and pL2 = 1.95 t 0.6, with p(n) and p(a/(a))  
intermediate between Berge et al's two results. It appears that in the lipid monolayer 6 
can vary smoothly between 0.33 and 0.5. 

23 (B )) . 
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Figure U. Evolution of a magnetic froth with increas- 
ing ((A) - (F)) applied magnetic field. Figure sup 
plied by Molho (see Glarier 1989). 

If we assume that the filling fraction is constant during the experiment, the simplest 
combination of the two growth laws is: 

da(n, r)/dr = EK(R - 6) + (1 - P ) K ( ( l / r )  - l/(r)) (27) 

where E increases from 0 to 1 with the filling fraction. So far, there does not appear to 
have been any study of such intermediate mean-field theories. 

18. Magnetic domains 

Magneticfrothin agarnet filmpresentsasubtler problem. That garnetfilmscanproduce 
froths thatcoarsenwithincreasing magneticfieldshasbeen knownforalongtime(Wo1fe 
and North 1974). More recently, they have been studied by Babcock and Westervelt 
(1989a, b, 1990) and Molho (Glazier 1989, Weaire er al 1991). The differences from 
normal coarsening are striking. While the pattern energy does contain a term pro- 
portional to the total boundary length in the froth, for all but weak fields, the dominant 
term is the dipole interaction between patches of bulk magnetization. An external 
magnetic field applied to  favour one directionof magnetization sets the balance between 
the two terms, and hence a length scale. The patterns are static, with the applied field 
playing the role of time (figure 24). The presence of dipole fields causes the walls to 
repel each other, stabilizing small bubbles and leading to patch-wise, abrupt evolution. 
Babcock et al (1990) found a scaling regime for large magnetic fields with p = 1.45. 
Molho(seeG1azier 1989),ontheotherhand,foundnoscalingstateor power-law growth 
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with increasing applied magnetic field (figure 25). The origin of this discrepancy remains 
to be explained. 

Weaire er a1 (1991) have approached the problem by treating the long-range inter- 
action as a perturbation to a direct simulation soap froth model, where the wall energy 
depends on the areas of the neighbouring bubbles only out to a defined range (figure 
26). Using nearest- and next-nearest-neighbour interactions gives the correct qualitative 
loss of stability for few-sided bubbles, and reasonable values for p(n) and area growth. 
It alsogives the observedstabilization of small bubbles followed by patch-wise evolution. 
Itcannot,however,create themoreexoticlabyrinthsandother texturesthatcharacterize 
magnetic bubbles. Higher-order models might. 

19. Conclusions 

It now seems that Smith's (1952) original result was correct: the two-dimensional soap 
froth reaches a scaling state with p = 0.5. This state is characterized by well defined 
distributions withp2 = 1.5. By implication,anyotherisotropictwo-dimensionalpattern 
that obeys von Neumann's law and has only T1 and T2 topological processes will have 
the same values of p and p z .  Examples include low-liquid-fraction lipid monolayers and 
grain growth in metal films at high temperatures. Where secondary effects like growing 
Plateau borders, impurity pinning, bubble stabilization, or anisotropy are important, 
the values of and p2 may change. Similarly, changes in the underlying topological 
processes (e.g. cell division in biology) or the presence of higher-order vertices, or 
changes in the underlying dynamics (e.g. the Lifschitz-Slyozov law) can change p and 
P2. 

Why did it take so long to reach such a seemingly obvious result? The origin of the 
confusion was twofold. First, the transients in a soap froth can be very long. Many finite 
systems do not reach a scaling state until they contain only a few cells. Moreover, these 
transients can mimic power-law growth. Secondly, rather subtle details can produce 
large changes in the measured p for both experiments (PB) and models (anisotropy). 
The moral seems to be that it is difficult indeed to identify scaling states, especially from 
the exponents alone, and that it is very difficult to disentangle the generic behaviour of 
a froth from artifacts caused by the details of experimental design. In the case of 
three-dimensional bubbles, this lesson seems to have been learned. There is universal 
agreement that p = 0.5. 

However, now that the baseline behaviour of the two-dimensional soap froth is 
understood, it is possible to add complications in acontrolled manner. The recent studies 
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Figure 26. Direct simulation of the cascade of topological transformations resulting from a 
small change in effective magnetic field. From Weaire er01 (1991). 

of PB. lipid monolayers, three-dimensional bubbles and magnetic froths all owe their 
existence to Smith’s original insight that the soap froth offered an appealing analogue 
to ideal grain growth. 
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